Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning
نویسندگان
چکیده
منابع مشابه
Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning
Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adap...
متن کاملLarge-Scale Semi-Supervised Learning
Labeling data is expensive, whilst unlabeled data is often abundant and cheap to collect. Semi-supervised learning algorithms that use both types of data can perform significantly better than supervised algorithms that use labeled data alone. However, for such gains to be observed, the amount of unlabeled data trained on should be relatively large. Therefore, making semi-supervised algorithms s...
متن کاملLarge Scale Distributed Semi-Supervised Learning Using Streaming Approximation
Traditional graph-based semi-supervised learning (SSL) approaches, even though widely applied, are not suited for massive data and large label scenarios since they scale linearly with the number of edges |E| and distinct labels m. To deal with the large label size problem, recent works propose sketch-based methods to approximate the distribution on labels per node thereby achieving a space redu...
متن کاملDetection of Keratoconus by Semi-Supervised Learning
Keratoconus, is a non-inflammatory disorder of the eye in which structural changes within the cornea cause it to thin and change to a more conical shape which leads to substantial distortion of vision. Current methods for the detection of the disease mainly are Supervised learning approaches. Our goal is to label suspect patients who have not been clinically diagnosed(unlabeled data). Hence, we...
متن کاملPolyphonic Music Note Onset Detection Using Semi-Supervised Learning
Automatic note onset detection is particularly difficult in orchestral music (and polyphonic music in general). Machine learning offers one promising approach, but it is limited by the availability of labeled training data. Score-toaudio alignment, however, offers an economical way to locate onsets in recorded audio, and score data is freely available for many orchestral works in the form of st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods and Programs in Biomedicine
سال: 2014
ISSN: 0169-2607
DOI: 10.1016/j.cmpb.2013.12.009